Retarded broscience.
Eur J Appl Physiol. 2008 Feb;102(3):271-81. Epub 2007 Oct 10.
Resistance training using eccentric overload induces early adaptations in skeletal muscle size.
Norrbrand L, Fluckey JD, Pozzo M, Tesch PA.
Section for Muscle and Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden.
Abstract
Fifteen healthy men performed a 5-week training program comprising four sets of seven unilateral, coupled concentric-eccentric knee extensions 2-3 times weekly. While eight men were assigned to training using a weight stack (WS) machine, seven men trained using a flywheel (FW) device, which inherently provides variable resistance and allows for eccentric overload. The design of these apparatuses ensured similar knee extensor muscle use and range of motion. Before and after training, maximal isometric force (MVC) was measured in tasks non-specific to the training modes. Volume of all individual quadriceps muscles was determined by magnetic resonance imaging. Performance across the 12 exercise sessions was measured using the inherent features of the devices. Whereas MVC increased (P < 0.05) at all angles measured in FW, such a change was less consistent in WS. There was a marked increase (P < 0.05) in task-specific performance (i.e., load lifted) in WS. Average work showed a non-significant 8.7% increase in FW. Quadriceps muscle volume increased (P < 0.025) in both groups after training. Although the more than twofold greater hypertrophy evident in FW (6.2%) was not statistically greater than that shown in WS (3.0%), all four individual quadriceps muscles of FW showed increased (P < 0.025) volume whereas in WS only m. rectus femoris was increased (P < 0.025). Collectively the results of this study suggest more robust muscular adaptations following flywheel than weight stack resistance exercise supporting the idea that eccentric overload offers a potent stimuli essential to optimize the benefits of resistance exercise.
J Orthop Sports Phys Ther. 2003 Oct;33(10):557-71.
Eccentric muscle contractions: their contribution to injury, prevention, rehabilitation, and sport.
LaStayo PC, Woolf JM, Lewek MD, Snyder-Mackler L, Reich T, Lindstedt SL.
Division of Physical Therapy, University of Utah, Salt Lake City, UT 84108, USA. paul.lastayo@health.utah.edu
Abstract
Muscles operate eccentrically to either dissipate energy for decelerating the body or to store elastic recoil energy in preparation for a shortening (concentric) contraction. The muscle forces produced during this lengthening behavior can be extremely high, despite the requisite low energetic cost. Traditionally, these high-force eccentric contractions have been associated with a muscle damage response. This clinical commentary explores the ability of the muscle-tendon system to adapt to progressively increasing eccentric muscle forces and the resultant structural and functional outcomes. Damage to the muscle-tendon is not an obligatory response. Rather, the muscle can hypertrophy and a change in the spring characteristics of muscle can enhance power; the tendon also adapts so as to tolerate higher tensions. Both basic and clinical findings are discussed. Specifically, we explore the nature of the structural changes and how these adaptations may help prevent musculoskeletal injury, improve sport performance, and overcome musculoskeletal impairments.